on birinci asırda Bağdat’ta yetişen meşhûr matematik âlimi. İsmi Muhammed bin Hasan el-Hasîb, künyesi Ebû Bekr’dir. Kerh’te doğduğu için Kerhî nisbetiyle meşhur oldu. Doğum târihi bilinmemektedir.
Genç yaşta din ve fen ilimlerini öğrendi. Fıkıh ilmi, İslâm hukûku ve matematik alanlarında söz sâhibi oldu. Ömrünü Bağdat’ta geçiren Kerhî, kısa bir süre dağlık bölgelerde yaşamış ve bu esnâda geometri üzerinde çalışarak, cebiri bu ilimden ayırmaya çalışmıştır. matematik alanında cebir ilmine esaslı hizmetleri ile tanınan Kerhî, 1019 senesinde doğduğu yerde vefât etti.
Ünlü ilim târihçisi G. Sarton, eserinde Kerhî hakkında; “Avrupa, cebirdeki başarılarının çoğunu Kerhî’ye borçludur. Eserleri 19. asra kadar Avrupa üniversite ve bilim çevrelerinde kullanılan Kerhî; cebir ilminde selefi Harezmî ve Ebû Kâmil Şuca gibi âlimleri tâkib ederek, analitik metodları uygulamış ve bu sâhada kendine has keşiflerde bulunmuştur.” demektedir.
Geliştirdiği yeni cebir metodları sebebiyle, matematik düşünüşte derinlik ve orijinalite sâhibi olduğunu gösteren Kerhî, iki sayının küplerinin toplamının hiçbir zaman küp olamayacağını ortaya koydu. Bu teorem daha sonra Fransız fizikçi P. Fermat tarafından tekrar ortaya çıkarıldı.
Kerhî, diğer taraftan pozitif rasyonel sayıların teoremleri ve onların cebirsel ve geometrik ispatlarıyla meşhur olmuştu.
Kerhî’nin kuadratik denklemlerin çözümünü hem aritmetik, hem de geometrik olarak ispat metodu, Diophantus’a benzetilir. Meşhur Pascal üçgeninin, Fransız düşünürü Pascal’a âit değil de, Kerhî’ye âit olduğu ve Pascal’dan dört asır önce onun tarafından kullanılıp uygulandığı, El-Bahr fil Cebr adlı eserde açıkça belirtilmektedir. Eser, Yahyâ bin el-Mağribî tarafından yazılmıştır. Müellif, Kerhî’den aldığı bu metodu eserinde şekillerle îzâh etmektedir. Pascal bu metodu, İslâm âlimlerinden, belki de doğrudan doğruya Kerhî’nin eserlerinden almıştır. Fakat o da, diğer Avrupalı bilginler gibi aldığı kaynağın adını ve sâhibini belirtmeyerek, kendine mâl etmiştir. Kerhî, bu üçgeni zekâyı geliştirmek ve ihtimâl hesapları yapmak için kullanmıştır. Daha sonra da Yahyâ ibn el-Mağribî, Tûsî ve Kâşî tarafından geliştirilerek, bugünkü modern binom teoreminin temelini tşkil etmiştir.
Eserleri:
Kerhî, matematik alanında pek fazla eser yazmıştır. Fakat bunların çoğu kaybolmuş, ancak az bir kısmı zamânımıza ulaşmıştır. 1) El-Bahr fil-Cebr ve Mukâbele: En önemli eseridir. Zamânın vezîri Fahr-ül-Melik’e ithâf ettiği eserin, nüshaları Oxford, Pâris ve Kâhire kütüphânelerinde bulunmaktadır. F. Woepcke tarafından yapılan Fransızca özeti 1852 senesinde yayınlanmıştır. Ömer Hayyâm’ın cebir alanında yazdığı eserden sonra, bu dalın en önemli eseridir. Eserin bir özelliği, sayıların ifâdesinde rakamlar yerine harflerin kullanılmasıdır.
2) El-Bedî fil-Hisâb: Bu eserde Oklid ve Nicomachus tarafından ele alınan sâbit noktalar incelenmiş ve cebirsel işlemlere önemli yer ayrılmıştır.
3) El-Kâfi fil-Hisâb: Eser, fonksiyonların kullanımı hakkında yazılmıştır. Ayrıca aritmetik, cebir ve geometrinin özetleri mevcuttur. Yazma tek nüshası Gotha’da bulunmaktadır. 1878-1880’de A. Heoheim tarafından Almancaya tercüme edilerek, üç fasikül hâlinde yayınlanmıştır.
4) İnbât-ül-Miyâh-ül-Hafiyye: Su getirme hidroliğine âit mükemmel bir eserdir. Kendi hayâtına âit notlar yanında, yeryüzü coğrafyası ile ilgili kavramlar da mevcuttur. Topoğrafya âletlerinden ve bunların prensiplerinden bahsetmektedir. Aynı zamanda kuyu ve hidrolik yapıların inşâsı ve hukûkî durumlarını da incelemektedir. Eser, 1845 senesinde Haydarâbâd’da basılmıştır.
Bu sayfada yer alan bilgilerle ilgili sorularınızı sorabilir, eleştiri ve önerilerde bulunabilirsiniz. Yeni bilgiler ekleyerek sayfanın gelişmesine katkıda bulunabilirsiniz.